ʱ¼ä£º2018-11-14
×÷ÕߣºÇòËÙÌåÓý
µã»÷Á¿£º
¼ò½é£º
LCi-T ±ãЯʽ¹âºÏÒÇÊÇ×îСÇÉ¡¢Çá±ãµÄ±ãЯʽ¹âÏàÖúÓòⶨÒÇ£¬ÓÃÒÔÕÉÁ¿Ö²ÎïҶƬµÄ¹âºÏËÙÂÊ¡¢ÕôÌÚËÙÂÊ¡¢Æø¿×µ¼¶ÈµÈÓëÖ²Îï¹âÏàÖúÓÃÏà¹ØµÄ²ÎÊý¡£ÒÇÆ÷Ó¦ÓÃIRGA£¨ºìÍâÆøÌåÆÊÎö£©ÔÀí£¬¾«ÃÜÕÉÁ¿Ò¶Æ¬ÍâòCO2Ũ¶È¼°Ë®·ÖµÄ±ä¸ïÇé¿öÀ´¿¼²ìҶƬÓëÖ²Îï¹âÏàÖúÓÃÏà¹ØµÄ²ÎÊý¡£ÌØÊâµÄÉè¼Æ¿ÉÔÚ¸ßʪ¶È¡¢¸ß³¾°£Çé¿öʹÓ᣼ȿÉÔÚÑо¿ÖÐʹÓã¬ÓÖÊǺܺõĽÌѧÒÇÆ÷¡£
ÉÏͼ×óΪȫÌ×¹âºÏÒÇÖ÷»úÅä¼þ¼°±ãЯÏäµÈ£¬ÉÏͼÖÐΪ¹âºÏÒÇÖ÷»úºÍÊÖ±ú£¬ÉÏͼÓÒΪ²Ù×÷ÈËÔ±½øÐÐÒ°ÍâʵÑé
Ó¦ÓÃÁìÓò
¼¼ÊõÌصã
ÉÏͼΪӢ¹ú½£ÇÅ´óѧֲÎï¿ÆѧϵM. Davey²©Ê¿ÔÚÄϼ«ÖÞ¶ÔÔåÀà¹âÏàÖúÓÃÑо¿Ê±µÄÊÂÇéͼƬ£¬ÒòLCϵÁйâºÏÒÇÇá±ãСÇÉ£¬¼á¹ÌÄÍÓã¬Ðøº½³¤ÆÚµÈÌص㱻ÁÐΪÊ×Ñ¡¡£
¼¼ÊõÖ¸±ê
1£©ÕÉÁ¿²ÎÊý°üÀ¨F0¡¢Ft¡¢Fm¡¢Fm¡¯¡¢QY_Ln¡¢QY_Dn¡¢NPQ¡¢Qp¡¢Rfd¡¢RAR¡¢Area¡¢M0¡¢Sm¡¢PI¡¢ABS/RCµÈ50¶à¸öÒ¶ÂÌËØÓ«¹â²ÎÊý£¬¼°3ÖÖ¸ø¹â³ÌÐòµÄ¹âÏìÓ¦ÇúÏß¡¢2ÖÖÓ«¹â´ãÃðÇúÏß¡¢OJIPÇúÏßµÈ
2£©¸ßʱ¼äÇø·ÖÂÊ£¬¿É´ï10Íò´ÎÿÃ룬×Ô¶¯»æ³öOJIPÇúÏß²¢¸ø³ö26¸öOJIP-testÕÉÁ¿²ÎÊý°üÀ¨F0¡¢Fj¡¢Fi¡¢Fm¡¢Fv¡¢Vj¡¢Vi¡¢Fm/F0¡¢Fv/F0¡¢Fv/Fm¡¢M0¡¢Area¡¢Fix Area¡¢Sm¡¢Ss¡¢N¡¢Phi_P0¡¢Psi_0¡¢Phi_E0¡¢Phi-D0¡¢Phi_Pav¡¢PI_Abs¡¢ABS/RC¡¢TR0/RC¡¢ET0/RC¡¢DI0/RCµÈ
1£©¿íÒ¶Ò¶ÊÒ£º³¤¡Á¿íΪ2.5¡Á2.5cm£¬ÊÊÓÃÓÚÀ«Ò¶¼°´ó´ó¶¼Ò¶Æ¬ÀàÐÍ
2£©ÕÒ¶Ò¶ÊÒ£º³¤¡Á¿íΪ5.8¡Á1cm£¬ÊÊÓÿí¶ÈСÓÚ1cmµÄÌõÐÎÒ¶
3£©ÕëÒ¶Ò¶ÊÒ£º³¤Ô¼69mm£¬Ö±¾¶47mm£¬ÊÊÓÃÓÚ´Ø×´ÕëÒ¶£¨°×¹â¹âÔ´£©
4£©Ð¡ÐÍÒ¶Ò¶ÊÒ£ºÒ¶ÊÒÖ±¾¶Îª16.5mm£¬ÕÉÁ¿Ãæ»ý2.16cm2
5£©ÍÁÈÀºôÎü/СÐÍÖ²ÎïÊÒ£ºÕÉÁ¿ÕÉÁ¿ÍÁÈÀºôÎü£¬»òÕ߸߶ȵÍÓÚ55mmµÄÕûÖê²Ý±¾Ö²Îï¹âÏàÖúÓ㬵×ÃæÖ±¾¶Îª11cm
6£©¶à¹¦Ð§ÕÉÁ¿ÊÒ£º³¤¡Á¿í¡Á¸ßΪ15¡Á15¡Á7cm£¬·ÖΪÉÏÏÂÁ½²¿·Ö£¬Éϲ¿ÕÉÁ¿Ð¡ÐÍÖ²Îï¹âÏàÖúÓã¬Ï²¿·ÖÕÉÁ¿ÍÁÈÀºôÎü
7£©¹ûʵÕÉÁ¿ÊÒ£ºÉÏÏÂÁ½²¿·Ö×é³É£¬Éϲ¿Í¸Ã÷£¬Ï²¿Îª½ðÊô£¬¿ÉÕÉÁ¿¹ûʵ×î´óÖ±¾¶Îª11cm£¬×î´ó¸ß¶ÈΪ11.5cm
8£©¹Ú²ãÕÉÁ¿ÊÒ£ºµ×ÃæÖ±¾¶12.7cm£¬¸ß12.2cm£¬ÊÊÓÃÓڵرí¹Ú²ã
9£©Ó«¹âÒÇÁªÓÃÊÊÅäÆ÷£ºÊÊÓÃÓÚÁ¬½Ó¶àÖÖÒ¶ÂÌËØÓ«¹âÒÇ
ÉÏͼ´Ó×óµ½ÓÒÒÀ´ÎΪÕëÒ¶ÊÒ¡¢¹ûʵÕÉÁ¿ÊÒ¡¢ÍÁÈÀºôÎüÊÒ¡¢¶à¹¦Ð§ÕÉÁ¿ÊÒ¡¢¹Ú²ãÊÒ
µä·¶Ó¦ÓÃ
Leaf life span optimizes annual biomass production rather than plant photosynthetic capacity in an evergreen shrub, Marty C. et al. 2010, New Phytologist, 187(2): 407-416
±¾ÎÄÑо¿ÁËRhododendron ferrugineum£¨¸ßɽõ¹å¶Å¾é£¬¶Å¾éÊôģʽÖÖ£©¾»¹âºÏÄÜÁ¦ÓëҶƬÊÙÃüµÄ¹Øϵ£¬·¢Ã÷Óиü¶à½ÏÀÏҶƬµÄÖÖȺÆä¹âºÏÄÜÁ¦¸üÇ¿£¨Í¼ÖÐÉîÉ«ÇøÓòΪһÄêҶƬºÍ¶þÄêҶƬ£©¡£
²úµØ£ºÓ¢¹ú
Ñ¡Åä¼¼Êõ¼Æ»®
²Î¿¼ÎÄÏ×£¨½öÁгö²¿·Ö´ú±íÐÔÎÄÏ×£©
1. Ahmad, I. Jabeen, N. Ziaf, J.M. Dole, M.A.S. Khan, M.A.. Bakhtavar (2017) . Macronutrient application affects morphological, physiological, and seed yield attributes of Calendula officinalis L. Canadian Journal of Plant Science, 2017, 97:906-916, https://doi.org/10.1139/cjps-2016-0301.
2. Elansary, H.O. Acta Physiol Plant (2017) . Green roof Petunia, Ageratum, and Mentha responses to water stress, seaweeds, and trinexapac-ethyl treatments J Acta Physiologiae Plantarum, 39,739: 145. doi:10.1007/s11738-017-2444-3.
3. Lee T.Y., et al. (2017) . Physiological responses of Populus sibirica to different irrigation regimes for reforestation in arid area. South African Journal of Botany, Volume 112, September 2017, Pages 329-335, ISSN0254-6299.
4. Magalhaes ID, Lyra GB, Souza JL, Teodora I, Cavalcante CA, Ferreira RA and Souza RC (2017). Physiology and Grain Yield of Common Beans under Evapotranspirated Water Reposition Levels. Irrigat Drainage Sys Eng 2017, 6:1 DOI: 10.4172/2168-9768.1000183.
5. Monteiro, M.V., Blanu?a, T., Verhoef, A., Richardson, M., Hadley, P., Cameron, R.W.F. (2017) . Functional green roofs: Importance of plant choice in maximising summertime environmental cooling and substrate insulation potential, Energy and Buildings, Available online 7 Feb 2017, http://dx.doi.org/10.1016/j.enbuild.2017.02.011.
6. Munjonji L., Ayisi K.K., Vandewalle B., Haesaert G., Boeckx P. Haesaert G. (2017). Yield Performance, Carbon Assimilation and Spectral Response of Triticale to Water Stress. Experimental Agriculture, Vol.52, Issue 1.
7. Munjonji L., Ayisi K.K., Vandewalle B., Haesaert G., Boeckx P. (2017) . Carbon Isotope Discrimination as a Surrogate of Grain Yield in Drought Stressed Triticale. In: Leal Filho
8. Pourghayoumia M. Bakhshi, D. Rahemi M., Kamgar-Haghighic A.A., Aalamid A. (2017) . The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought tolerance¡± Scientia Horticulturae. Volume 217, 15 March 2017, Pages 164-172.
9. Sakhonwasse S., Tummachai K., Nimnoy, N. (2017). Influences of LED Light Intensity on Stomatal Behavior of Three Petunia Cultivars Grown in a Semi-closed System¡± Environmental Control Biology, 55 (2), 93-103.
10. Yasin, N.A., Khan, W.U., Ahmad, S.R. et al. (2017). Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environ Sci Pollut Res (2017) https://doi.org/10.1007/s11356-017-0761-0.
11. Chandry R., and Hoduck, K. (2018) . Phytoremediatino and Physiological Effects of Mixed Heavy Metals on Poplar Hybrids. IntechOpen https://cdn.intechopen.com/pdfs/60715.pdf.
12. Ouledali, A., Ennajh, M., Ferrandino, A., Khemira, H., Schubert, A., Secchi, F. (2018) . Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants¡± South African Journal of Botany Vol. 121, March 2019, 152-158.
13. Tahjib-Ul-Arif, M., Siddiqui, M.N., Sohag, A.A.M. et al. J Plant Growth Regul (2018) . Salicylic Acid-Mediated Enhancement of Photosynthesis Attributes and Antioxidant Capacity. Contributes to Yield Improvement of Maize Plants Under Salt Stress¡±.
14. Qiu, K., Xie, Y., Xu, D. et al. Braz. J. Bot (2018) . Photosynthesis-related properties are affected by desertification reversal and associated with soil N and P availability¡±.
15. W., Belay S., Kalangu J., Menas W., Munishi P., Musiyiwa K. . Climate Change Adaptation in Africa. Climate Change Management. Springer, Cham.
16. Mujahid Ali1, Choudhary Muhammad Ayyub, Muhammad Amjad and Riaz Ahmad. (2019). Evaluation of thermo-tolerance potential in cucumber genotypes under heat stress. Pak. J. Agri. Sci., Vol. 56(1), 53-61; 2019 DOI: 10.21162/PAKJAS/19.7519
Î÷°²Ñз¢ÖÐÐÄ
΢ÐÅÃñÖÚºÅ
ÒµÎñ×Éѯ
΢ÐźÅ
ÇòËÙÌåÓý¹«Ë¾
΢ÐÅÃñÖÚºÅ
ÇòËÙÌåÓý¹«Ë¾
ÊÓƵºÅ
ÁªÏµÇòËÙÌåÓý£º
µØµã: ±±¾©Êк£µíÇø¸ßÀïÕÆ·3ºÅÔº6ºÅÂ¥1µ¥Î»101B
µç»°: 010-82611269/1572
ÊÖ»ú: 13671083121
´«Õæ: 010-62465844
Email: info@eco-tech.com.cn
ÓÑÇéÁ´½Ó£º