时间:2020-04-13
作者:球速体育
点击量:
简介:
前言
FMS能量代谢监测系统计划作为SSI家族一款经典、坚固耐用、多用途的高精度高区分率代谢丈量主机,受到全世界以种种昆虫、实验动物、小型及中大型野生动物、家禽家畜、人体等为研究工具的生理学、生态健康、生物医学科学家的极端青睐。FMS的再度升级改版,以更小体积、更大的数据贮存容量、智能化大触摸屏、更简化的操作、更合理的价格将再次引爆专注于实验研究科学家灵活机动的立异性生物新陈代谢研究热情。
上图左为新款FMS便携代谢仪主机,上图中为代谢丈量理论与技术手册,上图右为人体能量代谢计划
应用领域
技术特点
上图左为美国公共电视台PBS视频报道野外鸟类代谢监测使用10年之久的便携式设备,上图右为久坐生活方法下高区分率实时能量代谢监测计划。
技术指标
1. 传感器:O2剖析仪,燃料电池技术,使用寿命约2年,燃料电池可更换;CO2剖析仪,无色散双波长红外气体剖析仪;水汽剖析仪,薄膜电容传感器
2. 丈量规模:O2,0 - 100%;大气压,30-110 kPa;CO2,0 –5%;水汽压,0-100% RH(无凝结),温度0-100°C
3. 精度:O2:2-100%读数的0.1%;CO2:0-5%读数的1%;H2O:0-95% RH读数的1%,95-100%优于2%;温度0.2? C
4. 区分率:O2: 0.001%;CO2: 0.0001%-0.01%;H2O: 0.001%RH
5. 信号漂移:温度恒定的情况下O2: <0.02%每小时;CO2: <0.001%每小时;H2O: < 0.01%RH每小时
6. 信号输入:八个标准电压双极模拟输入,四个温度输入
7. 模拟输出:8个自界说
8. 数字控制输出:8TTL逻辑信号
9. 数字输出:RS-232转USB,Sablebus快速接口
10.内置存储器:SD存储卡,可达32GB
11.存储时间间隔:0.5sec到1hr用户自界说
12.气流流量:10-1500mL/min
13.流量控制:微电子热反响系统,气流控制通过精密反响环系统实际连接气流泵和流量计(微电脑控制),同时提供高精度针阀;精度:读数的2%
14.流量区分率:0-99.9mL/min为0.1mL/min;100mL/min 以上为1mL/min
15.触摸屏操作,可实时显示仪器各参数,可同时显示氧气、二氧化碳、水汽压、大气压、相对湿度、模拟输入信号、贮存巨细、取样情况、日期时间序列等数据。配备Windows版本软件,可在线显示和剖析数据
16.事情温度:3-50 °C,无冷凝
17.供电:12-15 VDC,带220V交流电适配器;可选配锂电池供电,便当野外操作。
18.尺寸:35cm×30cm×15cm
19.重量:4kg
上图从左到右依次为针对大象、蟋蟀、悬停蜂鸟、媒介昆虫提供的便携式代谢仪监测配套呼吸室计划
上图从左到右依次为针对着装铠甲士兵、集群鸟类、海洋哺乳动物、植株提供的代谢监测配套计划
上图从左到右依次为针对代谢笼舍、流通式啮齿类呼吸室、自发运动或运动诱导体能提供的代谢监测配套计划
典范应用一
Comparison of the CO2 ventilatory response through development in three rodent species: Effect of fossoriality,Sprenger R J, Kim A B, Dzal Y A, et al. Respiratory physiology & neurobiology, 2019, 264: 19-27.
本文研究了大鼠、仓鼠和松鼠幼体在差别日龄个体的呼吸模式以及对差别浓度二氧化碳气体的反应敏感性,进而探索啮齿类差别物种幼体发育的情况可塑性。
典范应用二
Greater energy demand of exercise during pregnancy does not impact mechanical efficiency,Denize K M, Akbari P, da Silva D F, et al. Applied Physiology, Nutrition, and Metabolism, 2019.
美国妇产科学院和加拿大的妇产科医生协会宣布了最新的孕妇运动指南,建议孕妇进行150分钟中等强度运动以减少妊娠并发症,有利于母体和婴儿的健康。然而有身(婴儿作为特殊负重)是如何影响孕妇的能量投入、运动体能和机械效率的却了解很少。该研究通过FMS便携式能量代谢仪来定量化差别运动程序的能量消耗和机械效率。
上图左为比照个体、孕早期、孕中期、孕后期的静息能量消耗比较,上图右比照个体、孕早期、孕中期、孕后期个体在21分钟标准运动任务后的运动能量消耗情况。*标明结果有显著性差别。
本研究立异性发明,1)孕期运动时间的能量需求与体重增加成正比;2)在低到中等强度的步行历程中机械效率坚持稳定。
产地:美国
选配技术计划
1)可选配WIC红外热成像技术连用组成动物代谢生理表型剖析系统
2)可选配2D&3D视频跟踪和行为剖析软件,进行动物行为3D跟踪、剖析和模型输出,高通量评估运动状态和运动水平,跟踪多个身体点,用于统计摆尾频率、身体摆动实验,可自动盘算个体间距离和个体间最近邻近距离用于动物集群行为实验
3)可选配植入式温度(心率、运动度)纪录器,进行实时的动物体温监测,发热个体呼吸模式及能量消耗剖析
4)可选配高光谱,进行代谢表型剖析历程中的血流信号剖析,以及高准确度肿瘤动物模型或人体的手术界限机械视觉诊断,以及Thermo-RGB医学双光红外热成像仪进行人体面部发热研究
参考文献(仅列出部分代表性文献)
1.Charters J E, Heiniger J, Clemente C J, et al. Multidimensional analyses of physical performance reveal a size‐dependent trade‐off between suites of traits[J]. Functional Ecology, 2018, 32(6): 1541-1553.
2.Cochran J P, Haskins D L, Eady N A, et al. Coal combustion residues and their effects on trace element accumulation and health indices of eastern mud turtles (Kinosternonsubrubrum)[J]. Environmental Pollution, 2018, 243: 346-353.
3.de Melo Costa C C, Maia A S C, Nascimento S T, et al. Thermal balance of Nellore cattle[J]. International journal of biometeorology, 2018, 62(5): 723-731.
4.Denize, Kathryn M., et al. "Greater energy demand of exercise during pregnancy does not impact mechanical efficiency." Applied Physiology, Nutrition, and Metabolism ja (2019).
5.Fernandes M H M R, Lima A R C, Almeida A K, et al. Fasting heat production of S aanen and A nglo N ubian goats measured using open‐circuit facemask respirometry[J]. Journal of animal physiology and animal nutrition, 2017, 101(1): 15-21.
6.Fonseca V C, Saraiva E P, Maia A S C, et al. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment[J]. International journal of biometeorology, 2017, 61(5): 777-784.
7.Friesen C R, Johansson R, Olsson M. Morph‐specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon[J]. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327(7): 433-443.
8.Guigueno M F, Head J A, Letcher R J, et al. Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks[J]. Environmental pollution, 2019, 253: 899-908.
9.Haskins D L, Hamilton M T, Stacy N I, et al. Effects of selenium exposure on the hematology, innate immunity, and metabolic rate of yellow-bellied sliders (Trachemys scriptascripta)[J]. Ecotoxicology, 2017, 26(8): 1134-1146.
10.Ivy C M, York J M, Lague S L, et al. Validation of a pulse oximetry system for high-altitude waterfowl by examining the hypoxia responses of the Andean goose (Chloephagamelanoptera)[J]. Physiological and Biochemical Zoology, 2018, 91(3): 859-867.
11.Ladds M A, Slip D J, Harcourt R G. Swimming metabolic rates vary by sex and development stage, but not by species, in three species of Australian otariid seals[J]. Journal of Comparative Physiology B, 2017, 187(3): 503-516.
12.Lenard A, Gifford M E. Mechanisms Influencing Countergradient Variation in Prairie Lizards, Sceloporusconsobrinus[J]. Journal of Herpetology, 2019, 53(3): 196-203.
13.Louppe V, Courant J, Videlier M, et al. Differences in standard metabolic rate at the range edge versus the center of an expanding invasive population of Xenopus laevis in the West of France[J]. Journal of Zoology, 2018, 305(3): 163-172.
14.Maia A S C, Nascimento S T, Carvalho M D, et al. Enteric methane emission of Jersey dairy cows: an investigation on circadian pattern[C]//21ST INTERNATIONAL CONGRESS OF BIOMETEOROLOGY. 2017: 100.
15.Nascimento C C N, de Fran?a Carvalho Fonsêca V, de Melo Costa C C, et al. Respiratory functions and adaptation: an investigation on farm animals bred in tropical environment[J]. 2017.
16.Noren D P, Holt M M, Dunkin R C, et al. Echolocation is cheap for some mammals: Dolphins conserve oxygen while producing high-intensity clicks[J]. Journal of experimental marine biology and ecology, 2017, 495: 103-109.
17.Otálora-Ardila A, Flores-Martínez J J, Welch K C. The effect of short-term food restriction on the metabolic cost of the acute phase response in the fish-eating Myotis (Myotis vivesi)[J]. Mammalian Biology, 2017, 82(1): 41-47.
18.Sanguino R A. Rapamycin Interacts with Nutrition to Decrease Basal MetabolicRate of Drosophila melanogaster[M]. Adelphi University, 2017.
19.Sprenger R J, Kim A B, Dzal Y A, et al. Comparison of the CO2 ventilatory response through development in three rodent species: Effect of fossoriality[J]. Respiratory physiology & neurobiology, 2019, 264: 19-27.
20.Toler M. Kinetics and Energetics of Feeding Behaviors in Daubentoniamadagascariensis[D]. Duke University, 2017
西安研发中心
微信民众号
业务咨询
微信号
球速体育公司
微信民众号
球速体育公司
视频号
联系球速体育:
地点: 北京市海淀区高里掌路3号院6号楼1单位101B
电话: 010-82611269/1572
手机: 13671083121
传真: 010-62465844
Email: info@eco-tech.com.cn
友情链接: