水情况自动控制系统能够对水温、溶解氧、pH/CO2、盐度等情况参数进行监测、纪录和调理。仅需一台电脑,即可同时对多个鱼缸、水族箱的一个或者多个参数进行同步、自动调控,使之抵达预设值或者运行自界说程序。
事情时,多台丈量设备连接到一部电脑,软件通过蓝牙(无线)或者以太网(有线)控制水泵或者电磁阀,响应丈量数据进行实时调控。
软件支持Win10/11系统,简单易用,关于四个情况参数的任意一个,它使数据纪录、传感器校准、丈量单位的更改、自动程序的设定等办法变得轻松友好。使用者可凭据具体的研究应用自界说运行程序,包括分级调理或者正弦模式,以模拟日变革等自然波动。并且程序能够被生存和加载,以便进行快速、一致性的设置。
功效特点
?新颖直观的软件界面,适用于Win10和Win11
?仅需一台电脑,通过多种传输方法(蓝牙、以太网和USB)和多台设备相连
?内置程序编辑功效—可生存和加载自界说程序文件
?温度、盐度、压强实时赔偿
?具备恒久监测/纪录/调理的卓越性能
?数据带时间戳,以.csv(Excel)文件花样生存
具体配置
1.OmniCTRL软件
软件既能够和监测水情况参数的设备无缝通信,也能够通过控制水泵/电磁阀对水情况参数进行调理。配合相应的硬件,可同程序控差别的参数,如水温和溶解氧;既能单向调控(参数调高或调低),又能双向调控(参数调高和调低)。软件实时显示实验历程中的每个水情况参数。所有图表都能够凭据喜好进行编辑,导出至Excel或生存成图像。所有纪录数据也能够被生存和导出成.csv文件,以便于在Excel中进一步剖析。
PowerX4四位插座能够实现基于软件驱动的控制,通过以太网或蓝牙的方法对水泵或电磁阀的开闭进行控制。每个延时控制的电参数(例如输入电压和功耗等)能够被软件监测和纪录,以便于对所连接的设备进行诊断。远距离蓝牙适配器包括1类蓝牙适配器和外接天线,能够将通例PC(2类蓝牙)的无线距离翻倍。
3.水情况监测和控制单位
可分为温度、溶解氧、盐度、pH/CO2、溶解氧&温度、盐度&温度、pH/CO2&温度共计7种配置。每种配置包括相应的监测单位(溶解氧丈量仪、pH丈量仪、盐度丈量仪等)和控制单位(水泵、电磁阀、管路等)。如下图为pH/CO2自动控制系统组成如下图(划分为单向调控和双向调控):
应用案例
使用溶解氧和pH自动控制系统研究多种气候变革胁迫因子对蓝平鲉(Sebastes mystinus)基因表达的影响(Cline et al., 2020)
使用溶解氧和pH自动控制系统研究海洋酸化、低氧和变暖对海洋贻贝消化酶活性的损害(Khan et al., 2020)
使用溶解氧自动控制系统研究低氧对鲍鱼生理状态和能量代谢的影响
(Shen et al., 2021)
使用pH自动控制系统研究海洋酸化对南方拟菱形藻(Pseudo-nitzschia australis)生长、光合能力、软骨藻酸产量的影响(Wingert and Cochlan, 2021)
参考文献
1.Cline, A.J., Hamilton, S.L., and Logan, C.A. (2020). Effects of multiple climate change stressors on gene expression in blue rockfish (Sebastes mystinus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 239, 110580. https://doi.org/10.1016/j.cbpa.2019.110580.
2.Duckworth, C.G., Picariello, C.R., Thomason, R.K., Patel, K.S., and Bielmyer-Fraser, G.K. (2017). Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure. Aquatic Toxicology 182, 120–128. https://doi.org/10.1016/j.aquatox.2016.11.014.
3.Hamilton, S.L., Kashef, N.S., Stafford, D.M., Mattiasen, E.G., Kapphahn, L.A., Logan, C.A., Bjorkstedt, E.P., and Sogard, S.M. (2019). Ocean acidification and hypoxia can have opposite effects on rockfish otolith growth. Journal of Experimental Marine Biology and Ecology 521, 151245. https://doi.org/10.1016/j.jembe.2019.151245.
4.Huang, X., Jiang, X., Sun, M., Dupont, S., Huang, W., Hu, M., Li, Q., and Wang, Y. (2018). Effects of copper on hemocyte parameters in the estuarine oyster Crassostrea rivularis under low pH conditions. Aquatic Toxicology 203, 61–68. https://doi.org/10.1016/j.aquatox.2018.08.003.
5.Khan, F.U., Hu, M., Kong, H., Shang, Y., Wang, T., Wang, X., Xu, R., Lu, W., and Wang, Y. (2020). Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels. Chemosphere 256, 127096. https://doi.org/10.1016/j.chemosphere.2020.127096.
6.Kong, H., Wu, F., Jiang, X., Wang, T., Hu, M., Chen, J., Huang, W., Bao, Y., and Wang, Y. (2019). Nano-TiO2 impairs digestive enzyme activities of marine mussels under ocean acidification. Chemosphere 237, 124561. https://doi.org/10.1016/j.chemosphere.2019.124561.
7.Kraskura, K., and Nelson, J.A. (2020). Hypoxia tolerance is unrelated to swimming metabolism of wild, juvenile striped bass (Morone saxatilis). Journal of Experimental Biology 223, jeb217125. https://doi.org/10.1242/jeb.217125.
8.Mackey, T.E., Hasler, C.T., Durhack, T., Jeffrey, J.D., Macnaughton, C.J., Ta, K., Enders, E.C., and Jeffries, K.M. (2021). Molecular and physiological responses predict acclimation limits in juvenile brook trout (Salvelinus fontinalis). Journal of Experimental Biology 224, jeb241885. https://doi.org/10.1242/jeb.241885.
9.Murie, K.A., and Bourdeau, P.E. (2021). Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance. Sci Rep 11, 1–12. https://doi.org/10.1038/s41598-021-90608-6.
10.Shen, Y., Zhang, Y., Xiao, Q., Gan, Y., Wang, Y., Pang, G., Huang, Z., Yu, F., Luo, X., Ke, C., et al. (2021). Distinct metabolic shifts occur during the transition between normoxia and hypoxia in the hybrid and its maternal abalone. Science of The Total Environment 794, 148698. https://doi.org/10.1016/j.scitotenv.2021.148698.
11.Shrivastava, J., Ndugwa, M., Caneos, W., and De Boeck, G. (2019). Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. Aquatic Toxicology 212, 54–69. https://doi.org/10.1016/j.aquatox.2019.04.024.
12.Siddiqui, S., and Bielmyer-Fraser, G.K. (2015). Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Aquatic Toxicology 167, 228–239. https://doi.org/10.1016/j.aquatox.2015.08.012.
13.Sui, Y., Zheng, L., Chen, Y., Xue, Z., Cao, Y., Mohsen, M., Nguyen, H., Zhang, S., Lv, L., and Wang, C. (2022). Combined effects of short term exposure to seawater acidification and microplastics on the early development of the oyster Crassostrea rivularis. Aquaculture 549, 737746. https://doi.org/10.1016/j.aquaculture.2021.737746.
14.Wingert, C.J., and Cochlan, W.P. (2021). Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae 107, 102030. https://doi.org/10.1016/j.hal.2021.102030.
15.Zrini, Z.A., Sandrelli, R.M., and Gamperl, A.K. (2021). Does hydrostatic pressure influence lumpfish (Cyclopterus lumpus) heart rate and its response to environmental challenges? Conservation Physiology 9, coab058. https://doi.org/10.1093/conphys/coab058.
西安研发中心
微信民众号
业务咨询
微信号
球速体育公司
微信民众号
球速体育公司
视频号
联系球速体育:
地点: 北京市海淀区高里掌路3号院6号楼1单位101B
电话: 010-82611269/1572
手机: 13671083121
传真: 010-62465844
Email: info@eco-tech.com.cn
友情链接: